An introductory resource, this printable worksheet gets students to discriminate between geometric sequences and other.

.

Completing the square. .

.

.

Geometric Sequences (Day 1) 1. Identifying Geometric Sequence | Worksheet #1. 1 2,1 4, 1 6,1 8 Find the first five terms of the sequence and determine if it is geometric.

Lisa Davenport.

. Geometric sequence worksheets are prepared for determining the geometric sequence, finding first term and common ratio, finding the n th term of a geometric sequence, finding next three terms of the sequence and much more. For each of the following progressions, determine whether it is arithmetic, geometric, or neither: (a) 5, 9, 13, 17, ::: (b) 1, 2, 4, 8, ::: (c) 1, 1, 2, 3, 5, 8, 13, 21, ::: (d) 81, 9, 3, 1 3, ::: (e) 512, 474, 436, 398, ::: 2.

Worksheet by Kuta Software LLC Secondary Math 1 4. 6.

Not geometric.

9) Go back and circle the problem numbers in the above sequences (1-8) which represent Arithmetic sequences.

For many of the examples above, the pattern involves adding or subtracting a number to each term to get the next term. Download PDF.

Arithmetic. Exercises 3.

For an arithmetic sequence, a formula for thenth term of the sequence is a n 5 a 1 ~n 2 1!d.
6 Arithmetic and Geometric Progressions 1.
11.

Vertex form.

Introduction to geometric sequences.

. In these worksheets, students will determine if a series is arithmetic or geometric. 5.

. A sequence like 1 or 4 above is called an arithmetic sequence or arithmetic progression: the number pattern starts at a particular value and then increases, or decreases, by the same amount from each term to the next. a) What type of function is this? Why?? b) What is the Rate of Change? c) Write the equation of the function. Unit test Test your knowledge of all skills in this unit. t, x, s z, u x 6. .

.

In these guided notes students will define arithmetic and geometric sequences and analyze the common difference and the common ratio. 3 Arithmetic and Geometric Sequences Worksheet Name_____ Date_____ Period____ Β©Q y2Q0G1f5A pKPuZtyav dSAoZfMtzwQagrQes dLvLuCU.

(5k 4) k 1 18 12.

ID: 2447700.

.

.

23) a 21 = βˆ’1.